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Abstract

We consider a decentralized multi-agent
Multi Armed Bandit (MAB) setup consist-
ing of N agents, solving the same MAB in-
stance to minimize individual cumulative re-
gret. In our model, agents collaborate by
exchanging messages through pairwise gossip
style communications. We develop two novel
algorithms, where each agent only plays from
a subset of all the arms. Agents use the com-
munication medium to recommend only arm-
IDs (not samples), and thus update the set
of arms from which they play. We establish
that, if agents communicate ⌦(log(T )) times
through any connected pairwise gossip mech-
anism, then every agent’s regret is a factor of
order N smaller compared to the case of no
collaborations. Furthermore, we show that
the communication constraints only have a
second order e↵ect on the regret of our al-
gorithm. We then analyze this second order
term of the regret to derive bounds on the
regret-communication tradeo↵s. Finally, we
empirically evaluate our algorithm and con-
clude that the insights are fundamental and
not artifacts of our bounds. We also show
a lower bound which gives that the regret
scaling obtained by our algorithm cannot be
improved even in the absence of any com-
munication constraints. Our results demon-
strate that even a minimal level of collabora-
tion among agents greatly reduces regret for
all agents.

1 Introduction

Multi Armed Bandit (MAB) is a classical model ((Lat-
timore and Szepesvári, 2018),(Bubeck et al., 2012)),
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that captures the explore-exploit trade-o↵ in making
online decisions. MAB paradigms have found applica-
tions in many large scale systems such as ranking on
search engines (Yue and Joachims, 2009), displaying
advertisements on e-commerce web-sites (Chakrabarti
et al., 2009), model selection for classification (Li
et al., 2016) and real-time operation of wireless net-
works (Avner and Mannor, 2016). Oftentimes in these
settings, the decision making is distributed among
many agents. For example, in the context of web-
servers serving either search ranking or placing adver-
tisements, due to the the volume and rate of user re-
quests, multiple servers are deployed to perform the
same task (Cesa-Bianchi et al., 2019). Each server,
makes decisions (which can be modeled as a MAB (Yue
and Joachims, 2009)) on rankings or placing advertise-
ments and also collaborate with other servers by com-
municating over a network (Cesa-Bianchi et al., 2019).
In this paper, we study a multi-agent MAB model in
which agents collaborate to reduce individual cumula-
tive regret.

Model Overview - Our model generalizes the prob-
lem setting described in (Sankararaman et al., 2019).
Concretely, our model consists of N agents, each play-
ing the same instance of a K armed stochastic MAB,
to minimize its cumulative regret. At each time, every
agent pulls an arm and receives a stochastic reward
independent of everything else (including other agents
choosing the same arm at the same time). Addition-
ally, an agent can choose after an arm pull, to receive
a message from another agent through an information

pull. Agents have a communication budget, which lim-
its how many times an agent can pull information. If
any agent i 2 {1, · · · , N} chooses to receive a message
through an information-pull, then it will contact an-
other agent j chosen independent of everything else,
at random from a distribution P (i, ·) (unknown to
the agents) over {1, · · · , N}. The agents thus cannot
actively choose from whom they can receive informa-
tion, rather they receive from another randomly cho-
sen agent. The N ⇥N matrix P with its ith row being
the distribution P (i, ·) is denoted as the gossip matrix.
Agents take actions (arm-pulls, information-pulls and
messages sent) only as a function of their past his-
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tory of arm-pulls, rewards and received messages from
information-pulls and is hence decentralized.

Model Motivations - The problem formulation and
the communication constraints aim to capture key fea-
tures of many settings involving multiple agents mak-
ing distributed decisions. We highlight two examples
in which our model is applicable. The first example is
a setting consisting of N computer servers (or agents),
each handling requests for web searches from di↵erent
users on the internet (Buccapatnam et al., 2015; Li
et al., 2010). For each keyword, one out of a set of M
ad-words needs to be displayed, which can be viewed
as choosing an arm of a MAB. Here, each server is
making decisions on which ad to display (for the cho-
sen keyword) independently of other servers. Further,
the rewards obtained by di↵erent servers are indepen-
dent because the search users are di↵erent at di↵erent
servers. The servers can also communicate with each
other over a network in order to collaborate to maxi-
mize revenue (i.e., minimize cumulative regret).

A second example is that of collaborative recommen-
dation systems, e.g., where multiple agents (users) in
a social network are jointly exploring restaurants in
a city (Sankararaman et al., 2019). The users corre-
spond to agents, and each restaurant can be modeled
as an arm of a MAB providing stochastic feedback.
The users can communicate with each other over a so-
cial network, personal contact or a messaging platform
to receive recommendation of restaurants (arms) from
others to minimize their cumulative regret, where re-
gret corresponds to the loss in utility incurred by each
user per restaurant visit. Furthermore, if the restau-
rants/customers can be categorized into a finite set of
contexts (say, e.g. by price: low-cost/mid-price/high-
end, type of cuisine: italian, asian, etc.), our model is
applicable per context.

Key Contributions:

1. Gossiping Insert-Eliminate (GosInE) Algo-

rithm - In our algorithms (Algorithm 1 and 3), agents
only choose to play from among a small subset (of car-
dinality d

K
N e + 2) of arms at each time. Agents in

our algorithm accept the communication budget as an
input and use the communication medium to recom-

mend arms, i.e., agents communicate the arm-ID of
their current estimated best arm. Specifically, agents
do not exchange samples, but only recommend an arm
index. On receiving a recommendation, an agent up-
dates the set of arms to play from: it discards its esti-
mated worst arm in its current set and replaces it by
the recommended new arm.

Thus, our algorithm is non monotone with respect to
the set of arms an agent plays from, as agents can dis-

card an arm in a phase and then subsequently bring
the arm back and play it in a later phase, if this pre-
viously discarded arm gets recommended by another
agent. This is in contrast to most other bandit algo-
rithms in the literature. On one hand, classical regret
minimization algorithms such as UCB-↵ (Auer et al.,
2002) or Thompson sampling (Thompson, 1933) al-
low sampling from any arm at all points in time (no
arm ever discarded). On the other hand, pure explore
algorithms such as successive rejects (Audibert and
Bubeck, 2010) are monotone with respect to the arms,
i.e., a discarded arm is never subsequently played
again. The social learning algorithm in (Sankarara-
man et al., 2019) is also monotone, as the subset of
arms from which an agent plays at any time is non-
decreasing. In contrast, in this paper we show that
even if an agent (erroneously) discards the best arm
from its playing set, the recommendations ensure that
with probability 1, the best arm is eventually back in
the playing set.

2. Regret of GosInE Algorithm - Despite agents
playing among a time-varying set of arms of cardinal-
ity d

K
N e + 2, we show that the regret of any agent is

(Theorems 1 and 2) O
�⇣

d
K
N e+1
�2

log(T )
⌘�

+ C. Here,

�2 is the di↵erence in the mean rewards of the best
and second best arm and C is a constant depend-
ing on communication constraints and independent of
time. We show that the regret scaling holds for any

connected gossip matrix P and communication budget

scaling as ⌦(log(T )). Thus, any agent’s asymptotic re-
gret is independent of the the gossip matrix P or the
communication budget (Corollary 4). If agents never
collaborate (communication budget of 0), the system
is identical to each agent playing a standard K arm
MAB, in which case the regret scales as O

�
K
�2

log(T )
�

(Lai and Robbins, 1985),(Auer et al., 2002). Thus, our
algorithms reduce the regret of any agent by a factor of
order N from the case of no collaborations. Further-
more, a lower bound in Theorem 3 (and the discus-
sion in Section 6) shows that this scaling with respect
to K and N cannot be improved by any algorithm,
communication budget or gossip matrix. Specifically,
we show that even if an agent has knowledge of the
entire system history of arms pulled and rewards ob-
tained by other agents, the regret incurred by ev-
ery agent is only a factor of order N smaller than
the case of no collaborations. Moreover, our regret
scaling significantly improves over that of (Sankarara-
man et al., 2019), which applies only to the complete
graph among agents, in which the regret scales as

O
�
d
K
N e+log(N)

�2
log(T )

�
. Thus, despite communication

constraints, our algorithm leverages collaboration ef-
fectively.

3. Communication/Regret Trade-O↵ - The sec-
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ond order constant term in our regret bound captures
the trade-o↵ between communications and regret. As
an example, we show in Corollary 18 that, if the com-
munication budgets scale polynomially, i.e., agents can
pull information at-most t1/� times over a time horizon
of t, for some � > 1, when the agents are connected
by a ring graph (the graph with poorest connectivity),
the constant term in the regret scales as (N)� (upto
poly-logarithmic factor), whereas the regret scales as
(log(N))� , in the case when agents are connected by
the complete graph. Thus, we see that there is an
exponential improvement (in the additive constant) in
the regret incurred, when changing the network among
agents from the ring graph to the complete graph. In
general, we give through an explicit formula (in Corol-
lary 18) that, if the gossip matrix P has smaller con-
ductance (i.e., a poorly connected network), then the
regret incurred by any agent is higher. Similarly, we
also establish the fact that if the communication bud-
get per agent is higher, then the regret incurred is
lower (Corollary 20). We further conduct numerical
studies that establish these are fundamental and not
artifacts of our bounds.

2 Problem Setup

Our model generalizes the setting in (Sankararaman
et al., 2019). In particular, our model, imposes
communication budgets and allows for general gos-
sip matrices P , while the model in (Sankararaman
et al., 2019) considered only the complete graph among
agents.

Arms of the MAB - We consider N agents, each
playing the same instance of a K armed stochastic
MAB to minimize cumulative regret. The K arms
have unknown average rewards denoted by µ1, · · · , µK ,
where for every i 2 {1, · · · ,K}, µi 2 (0, 1). Without
loss of generality, we assume 1 > µ1 > µ2 � µ3 · · · �

µK � 0. However, the agents are not aware of this
ordering. For all j 2 {2, · · · ,K}, denote by �j :=
µ1 � µj . The assumption on the arm-means imply
that �j > 0, for all j 2 {2, · · · ,K}.

Network among Agents - We suppose that the
agents are connected by a network denoted by a N⇥N
gossip matrix P , where for each i 2 {1, · · · , N},
the ith row P (i, ·) is a probability distribution over
{1, · · · , N}. This matrix is fixed and unknown to the
agents.

Agent Actions - We assume that time is slotted (dis-
crete), with each time slot divided into an arm-pulling
phase followed by an information-pulling phase. In
the arm-pulling phase, all agents pull one of the K
arms and observe a stochastic Bernoulli reward, in-
dependent of everything else. In the information

pulling phase, if an agent has communication budget,
it can decide to receive a message from another agent
through an information pull. A non-negative and non-
decreasing sequence (Bt)t2N specifies the communica-
tion budget, where no agent can pull information for
more than Bt times in the first t time slots for all
t � 0. If any agent i 2 {1, · · · , N}, chooses to pull in-
formation in the information-pulling phase of any time
slot, it will contact another agent j 2 {1, · · · , N} cho-
sen independently of everything else, according to the
probability distribution given by P (i, ·). Thus, agents
receive information from a randomly chosen agent ac-
cording to a fixed distribution, rather than actively
choosing the agents based on observed samples. When
any agent j is contacted by another agent in the in-
formation pulling phase of a time-slot, agent j can
communicate a limited (O

�
log(NK)

�
number of bits.

Crucially, the message length does not depend on the
arm-means or on the time index.

Decentralized System - Each action of an agent,
i.e., its arm pull, decision to engage in an information
pull and the message to send when requested by an-
other agent’s information pull, can only depend on the
agent’s past history of arms pulled, rewards obtained
and messages received from information pulls. We
allow each agent’s actions in the information pulling
phase (such as whether to pull information and what
message to communicate if asked for), to depend on
the agent’s outcome in the arm-pulling phase of that
time slot.

Performance Metric - Each agent minimizes their
expected cumulative regret. For an agent i 2

{1, · · · , N} and time t 2 N, denote by I(i)t 2

{1, · · · ,K} to be the arm pulled by agent i in the
arm-pulling phase of time slot t. The regret of agent
i 2 N, after T time slots (arm-pulls) is defined as

R(i)
T :=

PT
t=1(µ1 � µ

I(i)
t
) and the expected cumulative

regret is E[R(i)
T ]1.

3 Synchronous GosInE Algorithm

We describe the algorithm by fixing an agent i 2

{1, · · · , N}.

Input Parameters - The algorithm has three inputs
(i) a communication budget (Bt)t2N, (ii) ↵ > 0 and
(iii) " > 0. From this communication budget, we con-
struct a sequence (Ax)x2N such that

Ax = max
�
min{t 2 N, Bt � x}, d(1 + x)1+"

e
�
. (1)

Every agent, only pulls information in time slots

1Expectation is with respect to all randomness, i.e., re-
wards, communications and possibly the algorithm.
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(Ax)x2N. This automatically respects the communi-
cation budget constraints. Since agents engage in in-
formation pulling at common time slots, we term the
algorithm, synchronous. For instance, if Bt = dt1/3e,
for all t � 1. and " < 2, then Ax = bx3

c, for all
x � 1. Similarly, if Bt = t, for all t � 1, i.e., if
the budget is adequate to communicate in every time
slot, then Ax = d(1 + x)1+"

e, for all x � 1. The pa-
rameter ✏ ensures that the time intervals between the
instants when agents request for an arm are well sep-
arated. In particular, having " > 0 ensures that the
inter-communication times scale at least polynomially
in time. As we shall see in the analysis, this only af-
fects the regret scaling in the second order term.

Initialization - Associated with each agent i 2

{1, · · · , N}, is a sticky
2 set of arms -

bS(i) =

⇢✓
(i� 1)

⇠
K

N

⇡
mod K

◆
+ 1, · · · ,

✓
i

⇠
K

N

⇡
� 1 mod K

◆
+ 1

�
. (2)

Notice that the cardinality |bS(i)
| = d

K
N e. In words, we

are partitioning the total set of arms, into sets of size
d
K
N e with the property that

SN
i=1

bS(i) = {1, · · · ,K}.
For instance, if K = N , then for all i 2 {1, · · · , N},
bS(i) = {i}. Denote by the set U (i)

0 = {idK
N e mod K}

and L(i)
0 = {idK

N e+ 1 mod K} and

S(i)
0 = bS(i)

[ U (i)
0 [ L(i)

0 . (3)

UCB within a phase - The algorithm proceeds in
phases with all agents starting in phase 0. Each phase
j � 1 lasts from time-slots Aj�1 + 1 till time-slot Aj ,
both inclusive3. We shall fix a phase j � 0 henceforth
in the description. For any arm l 2 {1, · · · ,K} and

any time t 2 N, T (i)
l (t) is the total number of times

agent i has pulled arm l, upto and including time t and

by bµ(i)
l (t), the empirical observed mean4. Agent i in

phase j, chooses arms from S(i)
j according to the UCB-

↵ policy of (Auer et al., 2002) where the arm is selected

from argmax
l2S(i)

j

✓
bµ(i)
l (t� 1) +

r
↵ ln(t)

T (i)
l (t�1)

◆
.

Pull Information at the end of a phase - The
message received (arm-ID in our algorithm) in the
information-pulling phase of time slot Aj is denoted

by O
(i)
j 2 {1, · · · ,K}. Every agent, when asked for a

message in the information-pulling phase of time-slot
Aj , will send the arm-ID it played the most in phase
j.

2The choice of term sticky is explained in the sequel.
3We use the convention A�1 = 0
4 bµ(i)

l (t) = 0 if T (i)
l (t) = 0

Update arms at the beginning of a phase - If

O
(i)
j 2 S(i)

j , then S(i)
j+1 = S(i)

j . Else, agent i discards

the least played arm in phase j from the set S(i)
j \

bS(i) and accepts the recommendation O
(i)
j , to form the

playing set S(i)
j+1. Observe that the cardinality of S(i)

j+1
remains unchanged. Moreover, the updating ensures
that for all agents i 2 {1, · · · , N} and all phases j,
bS(i)

⇢ S(i)
j , namely agents never drop arms from the

set bS(i). Hence, we term the set bS(i), sticky.

The pseudo-code of the Algorithm described above is
given in Algorithm 1.

3.1 Model Assumptions

We make two mild assumptions on the inputs, namely
that the gossip matrix P is connected (Assumption
A.1) and that the communication budgets Bt =
⌦(log(t)) (Assumption A.2). These are specified in
detail in Appendix A.

3.2 Regret Guarantee

The regret guarantee of Algorithm 1 is given in The-
orem 1, which requires a definition. Let N 2 N and a
P be a N ⇥ N gossip matrix. Denote by the random

variable ⌧ (P )
spr to be the spreading time of a rumor in a

pull model, with a rumor initially in node 1 (cf (Shah,
2009)). Formally, consider a discrete time stochastic
process where initially, node 1 has a rumor. At each
time step, each node j 2 {1, · · · , N} that does not pos-
sess the rumor, calls another node sampled indepen-
dently of everything else from the probability distribu-
tion P (j, ·). If a node j calls on a node possessing the
rumor, node j will possess the rumor at the end of the
call (at the end of current time step). The spreading

time ⌧ (P )
spr is the stopping time when all nodes possess

the rumor for the first time.

Theorem 1. Suppose in a system of N � 2 agents

connected by a communication matrix P satisfying as-

sumption (A.1) and K � 2 arms, each agent runs

Algorithm 1, with UCB parameter ↵ > 3 and commu-

nication budget (Bt)t2N and " > 0 satisfying assump-

tion (A.2). Then the regret of any agent i 2 [N ], after
time any time T 2 N is bounded by

E[R(i)
T ] 

0

@
d
K
N e+2X

j=2

1

�j

1

A 4↵ ln(T ) +
K

4
| {z }

Collaborative UCB Regret

+

g((Ax)x2N) + E[A
2⌧ (P )

spr
]

| {z }
Cost of Infrequent Pairwise Communications

, (4)

where (Ax)x2N is given in Equation (1) and
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Algorithm 1 Synch GosInE Algorithm (at Agent i)

1: Input : Communication Budgets (Bt)t2N and UCB Parameter ↵, " > 0

2: Initialization: bS(i), S(i)
0 according to Equations (2) and (3) respectively.

3: j  0
4: Aj = max

�
min{t � 0, Bt � j}, d(1 + j)1+"

e
�

. Reparametrize the communication budget
5: for Time t 2 N do

6: Pull - argmax
l2S(j)

i

✓
bµ(i)
l (t� 1) +

r
↵ ln(t)

T (i)
l (t�1)

◆

7: if t == Aj then . End of Phase

8: O
(i)
j  GetArm(i, j)

9: if O
(i)
j 62 S(j)

i then

10: U (i)
j+1  argmax

l2{U(i)
j ,L(i)

j }
(Tl(Aj)� Tl(Aj�1)) . The most played arm

11: L(i)
j+1  O

(i)
j

12: S(i)
j+1  bS(i)

[ L(i)
j+1 [ U (i)

j+1 . Update the set of playing arms

13: else

14: S(i)
j+1  S(i)

j .

15: j  j + 1
16: Aj = max

�
min{t � 0, Bt � j}, d(1 + j)1+"

e
�

. Reparametrize the communication budget

Algorithm 2 Synchronous Arm Recommendation

1: procedure Getarm((i, j)) . Input an agent i
and Phase j

2: m ⇠ P (i, ·) . Sample another agent

3: return argmax
l2S(j)

m

⇣
T (m)
l (Aj)� T (m)

l (Aj�1)
⌘
.

Most Played arm in phase j by agent m

g((Ax)x2N) = Aj⇤ + 2
2↵�3

⇣P
l� j⇤

2 �1
A2l+1

A3
l�1

⌘
where

j⇤ = 2max

✓
A�1

 ✓
N

✓
K

2

◆✓⇠
K

N

⇡
+ 1

◆◆ 1
(2↵�6)

!

+1,min

(
j 2 N :

Aj �Aj�1

2 + d
K
N e

� 1 +
4↵ log(Aj)

�2
2

)◆
,

where, A�1(x) = sup{y 2 N : Ay  x}, 8x 2 R+ and

log refers to natural logarithm throughout the paper.

In Appendix B, we provide some discussion and derive
insights from this theorem.

3.3 Proof Sketch

The proof of this theorem is carried out in Appendix
C and we describe the main ideas here. We deduce in
Proposition 2 that there exists a freezing time ⌧ such
that, all agents have the best arm by time ⌧ and only
recommend the best arm from henceforth, i.e., the set
of arms of agents do not change after ⌧ . The technical
novelty of our proof is in bounding E[A⌧ ], as this leads
to the final regret bound (Proposition 2).

There are two key challenges in bounding this term.
First, the choice of arm recommendation is based on
the most played arm in the current phase, while the
choice of arm to pull is based on samples even in the
past phases, as the UCB considers all samples of an
arm thus far. If the phase lengths are large (Equation
(1) ensures this), Lemma 6 shows that the probability
of an agent recommending a sub-optimal arm at the
end of a phase is small, irrespective of the number of
times it was played till the beginning of the phase.
Second, the events that any agent recommends a sub-
optimal arm in di↵erent phases are not independent,
as the reward samples collected by this agent, leading
to those decisions are shared. We show in Proposition
3 by establishing that after a random, almost surely
finite time (denoted as b⌧stab in Appendix C), agents
never recommend incorrectly.

3.4 Initialization without Agent IDs

The initialization in Line 2 of Algorithm 1 relies on
each agent knowing its identity. However, in many
settings, it may be desirable to have algorithms that do
not depend on the agent’s identity. We outline a simple
procedure to fix this (with guarantees) in Appendix N.

4 Asynchronous GosInE Algorithm

A synchronous system is not desirable in many cases
as agents could get a large number of message requests
during time slots (Aj)j�0. Consider an example where
the gossip matrix P is a star graph, i.e., for all i 6= 1,
P (i, 1) = 1 and P (1, i) = 1

N�1 . In this situation, at
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time slots (Ax)x2N, the central node 1 will receive a
(large) N � 1 di↵erent requests for messages, which
may be infeasible if agents are bandwidth constrained.

We present an asynchronous algorithm to alleviate this
problem. This new algorithm is identical to Algorithm
1 with two main di↵erences - (i) each agent chooses the
number of time slots it stays in any phase j as a ran-
dom variable independently of everything else, and (ii)

when asked for a recommendation, agents recommend
the most played arm in the previous phase. The first
point, ensures that even in the case of the star graph
described above, with high probability, eventually, no
two agents will pull information in the same time slot.
The second point ensures that even though the phase
lengths are random, the quality of recommendations
are good as they are based on large number of samples.
We give a pseudo-code in Algorithm 3 in Appendix E,
where lines 5 and 18 are new and lines 8 (agents have
di↵erent phase lengths) and 9 (arm recommendation
from previous phase) are modified from Algorithm 1.

Theorem 2. Suppose in a system of N � 2 agents

connected by a communication matrix P satisfying as-

sumption (A.1) and K � 2 arms, each agent runs

Algorithm 3, with UCB parameter ↵ > 3, � > 0 and

communication budget (Bt)t2N and " > 0 satisfying as-

sumption (A.2). Then the regret of any agent i 2 [N ],
after any time T 2 N is bounded by

E[R(i)
T ] 

0

@
d
K
N e+2X

j=2

1

�j

1

A 4↵ ln(T ) +
K

4
| {z }

Collaborative UCB Regret

+

(1 + �)E[A
2b2+�c⌧(P )

spr
] + bg((Ax)x2N, �)

| {z }
Cost of Asynchronous Infrequent Pairwise Communications

,

where bg((Ax)x2N, �) = 2(1 + �)

✓
A2d2+�ej⇤ +

⇣
2

2↵�3

⌘P
l�3

A2l

A3
l�1

◆
, where j⇤ given in Theorem 1 and

(Ax)x2N is given in Equation (1).

4.1 Proof Sketch

The proof of this theorem is carried out in Appendices
F,G and H. In order to prove this, we find it e↵ective
to give a more general algorithm (Algorithm 5 in Ap-
pendix F) where the agents choose the phase lengths
Pj as a Poisson distributed random variable. This al-
gorithm does not satisfy the budget constraint exactly,
but only in expectation, over the randomization used
in the algorithm. We analyze this in Theorem 8 stated
in Appendix F and proved in Appendix G. The main
additional technical challenge is that the phase lengths
of di↵erent agents are staggered. We crucially use the

convexity of the sequence (Ax)x2N (Assumption A.2)
in Proposition 6, along with more involved coupling
argument to a rumor spreading process (Proposition
4). The proof of Theorem 2 is a corollary of the proof
of Theorem 8 in Appendix H.

5 Lower Bound

In order to state the lower bound, we will restrict our-
selves to a class of consistent policies (Lai and Rob-
bins, 1985). A policy (or algorithm) is consistent,
if for any agent i 2 [N ], and any sub-optimal arm
l 2 {2, · · · ,K}, the expected number of times agent

i plays arm l up-to time t 2 N (denoted by T (i)
l (t))

satisfies for all a > 0, limt!1

E[T (i)
l (t)]
ta = 0.

Theorem 3. The regret of any agent i 2 [N ] after
playing arms for T times under any consistent policy

played by the agents and any communication matrix P
satisfies

lim inf
T!1

E[R(i)
T ]

ln(NT )
�

0

@ 1

N

KX

j=2

�j

KL(µj , µ1)

1

A , (5)

where for any a, b 2 [0, 1], KL(a, b) is the Kullback-

Leibler distance between two Bernoulli distributions

with mean a and b.

The proof of the theorem is carried out in Appendix
J. The proof of this lower bound is based on a system
where there are no communication constraints.

6 Insights

1. Insensitivity to Communication Constraints

- The following corollary follows directly from Theo-
rems 1 and 2.

Corollary 4. Suppose in a system of N � 2 agents

each running Algorithm 1 or 3 with parameters sat-

isfying conditions in Theorems 1 and 2 respectively.

Then, for every agent i 2 [N ] and time T 2 N,

lim sup
T!1

E[R(i)
T ]

ln(T )


0

@
d
K
N e+2X

j=2

4↵

�j

1

A .

Thus, as long as the gossip matrix P is connected (As-
sumption A.1) and the communication budget over a
horizon of T is at-least ⌦(log(T )), (Assumption A.2),
the asymptotic regret of any agent, is insensitive to P
and the communication budget.

2. Benefit of Collaboration - As an example, con-
sider a system where K = N and arm-means such that
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8j 2 {2, · · · ,K}, �j := � > 0. Let ⇧ be any con-
sistent policy for the agents in the sense of Theorem
3. Then Equation (5) and Corollary 4 implies that

sup⇡ lim supT!1

E[R(i)
T ]

E⇡ [R(i)
T ]


4↵

µ1(1�µ1)
, where in the nu-

merator is the regret obtained by our algorithms and
the denominator is by the policy ⇡. As ratio of asymp-
totic regret in our algorithm and the lower bound is a
constant independent of the size of the system, (does
not grow with N), our algorithms benefit from collab-
oration. Recall that the lower bound is obtained from
the full interaction setting where all agents communi-
cate with every other agent, after every arm pull while
in our model, every agent pulls information, a total of
at most o(T) times over a time horizon of T. Thus, we
observe that, despite communication constraints, any
agent in our algorithm performs nearly as good as the
best possible algorithm when agents have no commu-
nication constraints, i.e., the regret ratio is a constant
independent of N .

3. Impact of Gossip Matrix P - The second order
constant term in the regret bounds in Theorems 1 and
2 provides a way of quantifying the impact of P , based
on its conductance, which we define now. Given an
undirected finite graph G on vertex set V , denote for
any vertex u 2 V , deg(u) to be the degree of vertex
u in G. For any set H ✓ V , denote by Vol(H) =P

u2H deg(u). For any two sets H1, H2 ✓ V , denote
by Cut(H1, H2), to be the number of edges in G with
one end in H1 and the other in H2. The conductance
of G, denoted by � is defined as

� := min
H⇢V :0<Vol(H)Vol(V )/2

Cut(H,V \H)

Vol(H)
.

In corollaries 17 and 18, we prove the intuitive fact that
if the conductance of the gossip matrix is higher, then
the regret (the second order constant term) is lower. In
order to derive some intuition, we consider two exam-
ples here - one wherein the N agents are connected by
a complete graph, and one wherein they are connected
by the ring graph. The conductance of the complete
graph is N

2(N�1) , while that of the ring graph is 2
N .

Let the communication budget scale polynomially in
both systems, i.e., Bt = bt1/�c, for some � > 1, for
all t � 1. The cost of communications (as captured in
Corollary 18) scales as (4C log(N))� for the complete
graph, but scales as (4C log(N)N)� in the ring graph.
This shows the reduction in regret that is possible by
a ‘more’ connected gossip matrix, where the regret is
reduced from order (N log(N))� to (log(N))� on mov-
ing from the ring graph to the complete graph. This
is also demonstrated empirically in Figures 1 and 2.

4. Regret/Communication Trade-o↵ - For a fixed
problem instance and gossip matrix P , reducing the

Figure 1: (N,K) are (25, 75) and (15, 50) respectively.

Figure 2: (N,K) are (25, 75) and (15, 50) respectively.

total number of information pulls, i.e., reducing the
rate of growth of (Bx)x2N increases the per-agent re-
gret. This can be inferred by examining the cost of
communications in Equation (4), which we state in the
Corollary 20 in Appendix M. This corollary makes pre-
cise the qualitative fact that if agents are allowed more
communication budget, then they experience lesser re-
gret. We demonstrate this empirically in Figure 3.

7 Numerical Results

We evaluate our algorithm and the insights empiri-
cally. Each plot is the regret averaged over all agents,
produced after 30 and 100 random runs for Algo-
rithms 1 and Algorithm 3 (with � = 0.5) respectively,
along with 95% confidence intervals. We also plot
the two benchmarks of no interaction among agents
(where a single agent is running the UCB-4 algorithm
of (Auer et al., 2002)) and the system corresponding
to complete interaction, where all agents are playing
the UCB-4 algorithm with entire system history of all
arms pulled and rewards obtained by all agents as de-
scribed in Section 5.

Synthetic Experiments - We consider a synthetic
setup with � = 0.1, µ1 = 0.95, µ2 = 0.85, rest of the
arm means sampled uniformly in (0, 0.85]. In Figures 1
and 2, we consider the impact of gossip matrix by fix-
ing the communication budget Bt = bt1/3c (Ax = x3)
and varying P to be the complete and cycle graph
among agents. We see that our algorithms are e↵ec-
tive in leveraging collaboration in both settings and
experiences a lower regret in the complete graph case
as opposed to the cycle graph, as predicted by our
insights.

In Figure 3, we compare the e↵ect of communication
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Figure 3: (N,K) as (20, 70) and (5, 20) and the graphs
are complete and cycle respectively.

budget by considering two scenarios - polynomial bud-
get Bt = bt1/3c (Ax = x3) and logarithmic budget
Bt = blog2(t)c (Ax = 2x). We see that even under
a logarithmic communication budget, our algorithms
achieve significant regret reduction.

Real Data - In Figure 4, we run our Algorithms on
MovieLens data (Harper and Konstan, 2016) using the
methodology in (Sankararaman et al., 2019). This
dataset contains 6k movies rated by 4k users. We treat
the movies as arms and estimate the arm-means from
the data by averaging the ratings of a section of sim-
ilar users (same age, gender and occupation and have
rated at-least 30 movies). We further select only those
movies that have at least 30 ratings by users in the
chosen user category. We estimate the missing entries
in the sub-matrix (of selected users and movies) us-
ing matrix completion (Hastie et al., 2015) and choose
a random set of 30 and 40 movies, in Figure 4. We
compare against (Sankararaman et al., 2019) (hyper-
parameter " = 0.1) for the setting of complete graph
among agents and communication budget Bt = bt1/3c.
We see that in all settings, our algorithm has superior
performance and strongly benefits from limited collab-
oration.

8 Related Work

The closest to our work is (Sankararaman et al., 2019)
which introduced a model similar to ours. How-
ever, the present paper improves on the algorithm in
(Sankararaman et al., 2019) in three aspects: (i) our
algorithm can handle any gossip matrix P , while that
of (Sankararaman et al., 2019) can only handle com-
plete graphs and (ii), the algorithm in (Sankararaman
et al., 2019), needs as an input, a lower bound on the
arm gap between the best and the second best arm,
while our algorithms do not require any such knowl-
edge and (iii), our regret scaling is superior even on
complete graphs.

The multi-agent MAB was first introduced in the
non-stochastic setting in (Awerbuch and Kleinberg,
2005) and further developed in (Cesa-Bianchi et al.,
2019). However, there was no notion of communica-

Figure 4: (N,K) are (10, 30) and (15, 40) respectively.

tion budgets in these models. Subsequently, (Kanade
et al., 2012) considered the regret/communication
trade-o↵ in the non-stochastic setting, di↵erent from
our stochastic MAB model. In the stochastic set-
ting, the papers of (Chakraborty et al., 2017),(Buc-
capatnam et al., 2015), (Mart́ınez-Rubio et al., 2018),
(Kolla et al., 2018), (Landgren et al., 2016) consider
a collaborative multi agent model where agents min-
imize individual regret in a decentralized manner. In
these models, communications is not an active decision
made by agents, rather agents can observe neighbor’s
actions and are, therefore, di↵erent from our setup,
where agents actively choose to communicate depend-
ing on a budget. The papers of (Hillel et al., 2013)
and (Szörényi et al., 2013) study the benefit of col-
laboration in reducing simple regret, unlike the cu-
mulative regret considered in our paper. The paper
of (Korda et al., 2016) considers a distributed ver-
sion of contextual bandits, in which agents could share
information, whose length grows with time and thus
di↵erent from our setup. There has also been a lot
of recent interest in ‘competitive’ multi-agent bandits
((Anandkumar et al., 2011), (Liu et al., 2013), (Rosen-
ski et al., 2016), (Avner and Mannor, 2014), (Kalathil
et al., 2014), (Bistritz and Leshem, 2018),(Mansour
et al., 2017),(Liu et al., 2019)), where if multiple agents
choose the same arm in a time slot, then they expe-
rience a ‘collision’ and receive small reward (only a
subset (possibly empty) gets a reward). This di↵ers
from our setup where even on collision, agents receive
independent rewards.

9 Conclusions

We introduced novel algorithms for multi agent MAB,
where agents play from a subset of arms and recom-
mend arm-IDs. Our algorithms leverage collaboration
e↵ectively and in particular, its performance (asymp-
totic regret) is insensitive to the communication con-
straints. Furthermore, our algorithm exhibits a regret
communication trade-o↵, namely achieves lower regret
(finite time) with increased communications (budget
or conductance of P ), which we characterize through
explicit bounds.
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